

RESOURCES FOR "HSC-I COMPUTER" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

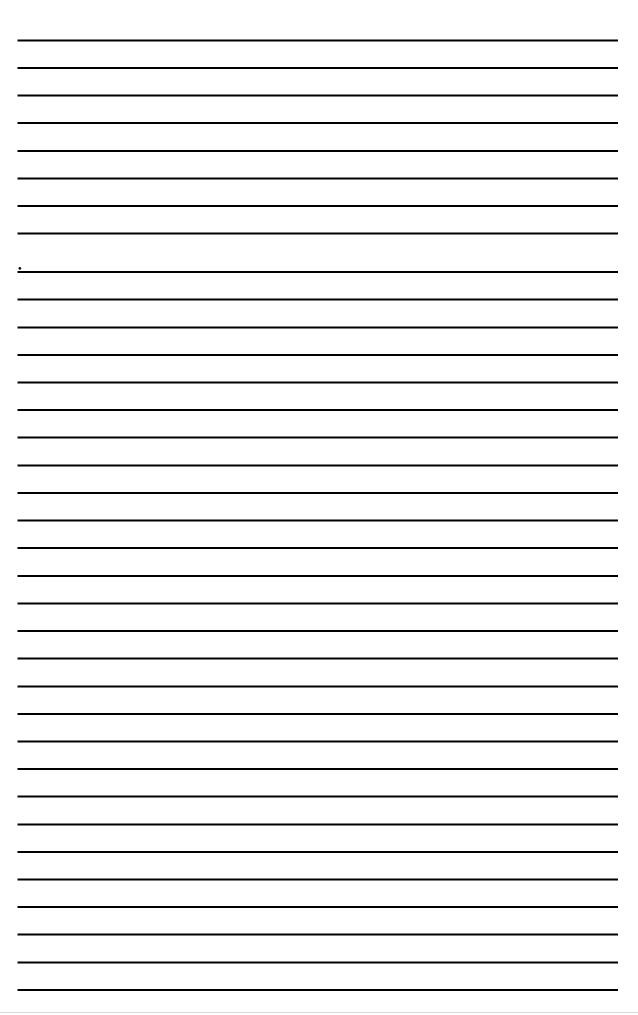
The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:


1. Extended Response Questions (ERQs)

HOW TO ATTEMPT ERQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION C (LONG ANSWER QUESTIONS)

1. Write some applications of ROBOT?

S.NO	ERQ	ANSWER	CL	DL
1.	Define Topology?	TOPLOGY	K/A	Μ
	Discuss 3 basic			
	type of	The physical structure or Layout of a network is called		
	topologies?	a Topology. The 4 Basic Topologies of LAN are Star,		
		Ring, Bus and Hybrid Topology. In a network topology,		
		a component or a device is called a Node, which is usually		
		a computer on a network.		
		(1) STAR TOPOLOGY		
		In this type of Topology, each device is connected to a		
		Central Unit. Any Communication between one device		
		and another goes through the central unit. The main		
		central computer is called "Server". Each device or		
		Computer is directly connected to the central server.		
		Central server contains interface cards and important		
		software to manage all type of communication in Star		
		Network.		
		Advantages		
		1. New Nodes or Terminals can be added to a network		
		easily.		
		2. No Chance of data collision because server prevents		
		collisions.		
		3. If a connection is broken between any communication		
		device and the server, the rest of the devices on the		
		network will Continue operating.		
		4. In case of adding new Nodes to the network, no		
		transmission Delays occurred.		
		Disadvantages		
		1. Most important device is central server. If the server		
		fails, the entire Network will collapse.		
		2. It is most expansive because a separate cable is		
		required for connecting each terminal with server.		
		(2) RING TOPOLOGY		
		In this type of Topology, there is no central server so		
		multiple terminals and some peripherals are connected into		
		a ring – like Structure. All communication between		
		terminals follows a clockwise or anticlockwise pattern. The		
		message goes from terminal to terminal until the		
		designated device is reached.		

		 Messages Flow in only one direction. Thus, there is no danger of collision. (Crash of signals) It is more reliable than star topology because Communication is not fully dependent on a single server. 		
		<u>Disadvantages</u> 1. If the Ring is broken, the entire network stops working.		
		 Trouble shooting of Ring Network is quite difficult. New Nodes or Terminals cannot be added to a network easily. 		
		4. Communication delay is directly proportional to the number of computers in the network. (3) BUS TOPOLOGY		
		In this type of Topology, there is no server so each device is connected to a Common Cable. Each Component must have its own interface device or card. The interface Card contains the hardware and software necessary to access the network. All communication takes place on the common cable or bus.		
		Advantages		
		 This is the basic, simplest form and easy to Understand type of topology. This is client / server or Peer – to – Peer network New Nodes can be added to a network easily. If one terminal becomes defective it does not disturb on the whole network. 		
		<u>Disadvantages</u>		
		 Additional / Extra circuitry and software are needed to avoid data collision. If error arises in a network, it is not easy to detect. If the connection is broken, The Entire network may 		
		stop working		
2.	Define OSI model? Discuss all 7 layers.	OSI MODEL OSI is the Acronym for <u>Open System Interconnection</u> . This is the most important communication standard, created by ISO (International Standard Organization) OSI model simulate (suggest) the communication process using Seven (7) Layers.	K/A	Μ
		Each Layer has its own set of protocols The purpose of OSI Model is to enable (allow) any vendor's (seller) computer system to share data with any other vendor's system in an open networking environment. 7 Layers of OSI Model are (1) Physical Layer (2) Data Link Layer (3)		
		Network Layer (4) Transport layer (5) Session Layer (6) Presentation Layer (7) Application layer (1) Physical Layer		

	 This is the First layer from the computer side. The Physical Layer Controls the electrical, mechanical and functional transmission of bits over the Data circuits (2) Data Link Layer The Data Link Layer detects and compensates (balance) for transmission errors and ensures (make sure) that slow receivers properly receive information sent by high – speed transmitters. (3) Network Layer The Network Layer determines how information is routed (The way or the direction) between computers 		
	 and within and between individual networks. It also handles software interface between networks, including networks with different protocols. (4) Transport Layer The Transport Layer Specifies the Rules for information exchange and manage end – to – end delivery of information within and between networks, including error recovery. It also controls information flow For 		
	 example, multiple data streams on a single channel. (5) Session Layer The Session Layer controls the dialogue (conversation) between two computers, managing file transfers and putting checkpoints into a data stream (flow) to allow portions of files to be retransmitted as needed. (6) Presentation Layer The Presentation Layer supplies transport communications by masking the differences in unlike data formats such as the ASCII and EBCDIS character codes, and perform data compression and encryption. (7) Application Layer The Applications layer supplies functions for particular applications such as file transfer, remote access, and 		
	virtual terminals. <u>CONCLUSION</u> When sending or receiving information according to the OSI model, the sender and receiver must use the Seven – Layer Protocols and interface.		
3. Define Hard Disk? Discuss the mechanism of Hard Disk	Hard Disk Hard Disk also Called Fixed Disk, is the Basic Storage Device for all Computers. It is also Called Mass Storage Device. Mechanism of Hard Disk. - Hard Disk Contains one or several rigid platters on which data may be recorded. - There may be as many as 12 Platters in a Unit. - All units are connected to a Central Spindle or Shaft.	K/A	M

		- Hard Disk Consist of Several Platters Stacked one		
		atop another. (Disk has almost 2 Sides)		
		- Every Hard Disk has a Cylinder which is refer to the		
		same track across all the disk sides.		
		- Hard Disk Generally Store 512 Bytes of Data in a		
		Sector.		
		- A Term <u>Fragmentation</u> means that a Data File		
		becomes Spread out across the Hard Disk in many Non-		
		Contiguous Clusters. (Speed Slow) Defragmentation		
		Means Data on the Hard Disk is Re-organized		
4.	Define CPU?	<u>CPU</u> (CENTRAL PROCESSING UNIT)	K/A	Μ
	Discuss all its	The central processing unit (CPU) executes program		
	important Parts.	instruction. You can think of it as the computer's brain.		
	1	In a microcomputer, the entire CPU is contained on a		
		tiny chip called a microprocessor, which is no larger		
		than your smallest fingernail.		
		The CPU has two main components:		
		-		
		0		
		THE CONTROL UNIT		
		All the computer's resources are managed from the		
		control unit, whose function is to coordinate all the		
		computer's activities. You can think of the control unit		
		as a traffic cop, directing the flow of data around the		
		CPU and around the computer.		
		THE ARITHMETIC/LOGIC UNIT		
		When the control units encounter an instruction that		
		involves arithmetic or logic operation, it passes control		
		to the second component of the CPU, the arithmetic/logic		
		unit (ALU). Arithmetic operations are, as you might		
		expect, the fundamental math operations: addition,		
		subtraction, multiplication, and division. Logical		
		operations consist of comparisons. That is, two pieces of		
		data are compared to see whether on is equal to (=), less		
		than (<). Or greater than (>) the other There are also		
		combinations, such as "greater than or equal to".		
		MAIN MEMORY		
		The main memory-also called main storage, primary		
		storage, internal storage or simply memory-holds data		
		and instructions for processing. Although closely		
		associated with the CPU, main memory is technically		
		separate from it. Memory Stores program, instructions		
_		or data in a computer	T7 / A	N #
5.	Define Monitor?	MONITOR	K/A	Μ
	Discuss CRT and	Monitor is the most commonly used form of output		
	Flat Panel Display	device when a permanent record is not required. A		
		monitor is a television-like device to display text and		
		graphics from a computer. The monitor is also referred		
		as screen, video display terminal (VDT) console, and		
		cathode-ray tube (CRT).		
		There are two main types of monitors:		
		Cathode-ray tube (CRT) monitor. Flat panel		
		monitor.		
		попног.	1	1

		The following chart shows three types and some common varieties of monitors included in these categories. <u>CATHODE-RAY TUBE MONITORS</u> The cathode-ray tube (CRT) is an output display device that resembles a television screen (see Fig. 1.30). This is the type of monitor used with microcomputer. CRTs contain an electron "gun" that a beam of electrons. The inside of the front of the CRT screen is coated with phosphor. When a beam of electrons from the electron gun hits the phosphor, it lights up tiny points of phosphor for a short period of time. Each tiny point of light is called a pixel (a contraction of picture element). Each character you see on the screen is made up of many pixels. <u>FLAT PANEL MONITORS</u> CRT monitors are the standard for use with desktop computers because they provide the brightest and clearest picture for the money. There are, however, certain major disadvantages associated with CRT monitors.		
		 (a) LCD (liquid crystal display) (b) EL (electroluminescent display) (c) Cas alogue display 		
6.	Define Operating System? Write down the important Features and Functions of Operating System	 (c) Gas-plasma display <u>OPERATING SYSTEM</u> The operating system (OS) is a collection of system software used to manage that overall operation of the computer. It is designed to support the activities of a computer. OS is a controlling hardware and software program. The prime objective of operating system is to improve the performance and efficiency of a computer system and increase facility, the ease with which a system can be used. Thus like a manger of a company, an operating system is responsible for the smooth and efficient operation for the entire computer system. Moreover, it makes the computer system user friendly. That is, it makes it easier for people to interface with and make use of the computer. <u>POPULAR OPERATING SYSTEMS</u> Popular operating systems include MS-DOS (Microsoft Disk Operating System), OS/2 (Operating System Two), Windows 95 through XP, Windows NT (Windows New 	K/A	M
		Windows 35 through 2000 and UNIX. The Macintosh uses finder and MultiFinder. FEATURES OF OPERATING SYSTEM Operating systems should have the following features:		

1. Efficiency, in terms of processor and resource utilization.
2. Reliability, in terms of being error-free and handling all possibilities in the execution of jobs.
 Maintainability, in terms of enhancing facilities, modularity, correction of bugs etc.
4. Small size, in terms of the amount of memory and backing store required.
FUNCTIONS OF OPERATING SYSTEM
1. Processor management, that is, assignment of
processors to different tasks being performed by the computer system.
2. Memory management, that is, allocation of main
memory and other storage areas to the system programs as well as user programs and data.
3. Input/output management, that is coordination
and assignment of the different input and output
devices while one or more programs are being executed.
4. File management, that is, the storage of files on
various storage and the transfer of these files from one storage device to another. It also allows
all files to be easily changed and modified
through the use of text editors or some other file
manipulation routines. 5. Establishment and enforcement of a job priority
system. That is, it determines and maintains the
order in which jobs are to be executed in the
computer system. Interpretation of commands and instructions

